

Kyle Goodyear BAE in Construction Management Pennsylvania State University Senior Thesis Presentation April 12, 2010

# Special Thanks to:

167<sup>th</sup> Airlift Wing

# **Presentation Outline**

- Project Background Information
   Solar Energy Collection
- Electrical Breadth
   Precast Concrete Walls
- Precast concrete wans
   Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity
- Conclusions
- Questions and Answers



- Solar Energy Collection © Electrical Breadth Precast Concrete Walls

- Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity
- Conclusions Questions and Answers

# Project Background

Olient: 167<sup>th</sup> Airlift Wing – WV Air National Guard

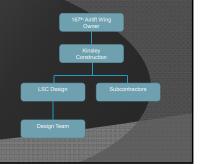
- Site: Martinsburg, WV
  - WV Eastern Regional Airport

• Purpose

• C-5 Galaxy Conversion Project



# **Presentation Outline**


- Project Background Information Solar Energy Collection © Electrical Breadth Precast Concrete Walls © Structural Breadth
- Hangar Slab Sequence Design/Build Productivity Conclusions

- Questions and Answers

# Project Background

### Design/Build Contract

- Kinsley Construction Design/Build Manager
   Holds all subcontracts
- LSC Design contracted by Kinsley Construction
   Holds all design team subcontracts
- All contracts based on lump sum



- Solar Energy Collection © Electrical Breadth Precast Concrete Walls

- Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity
- Conclusions Questions and Answers

# **Project Background**

### Oost: \$26.8 million

#### Schedule

- NTP for design: October 2008
- Office Mobilization: March 2009
- Scheduled Completion: March 2010
- Expected Completion: July 2010 extensions granted for additions to scope and weather delays



# Presentation Outline

- Project Background Information
   Solar Energy Collection

   Electrical Breadth

   Precast Concrete Walls

   Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity
   Conclusions
   Questions and Apage

# **Breadth Topics**

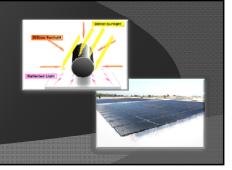
- Electrical Breadth Study
- Addition of solar collection system

#### Structural Breadth Study

Design of load-bearing concrete walls in place of masonry



#### Project Background Information


- Electrical Breadth
- Precast Concrete Walls
- Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity

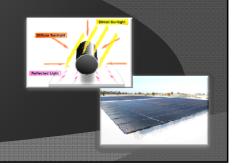
- Conclusions Questions and Answers

# Solar Energy Collection

#### Goal of Analysis

- Determine if the installation of Solyndra panels is a positive addition
  - Positive addition Potential energy production Building power usage Purchase and installation costs Payback period




### **Presentation Outline**

- Project Background Information
- Electrical Breadth
- Precast Concrete Walls Structural Breadth
- Hangar Slab Sequence Design/Build Productivity Conclusions

# Solar Energy Collection

- Solyndra, Inc. Panels
  - Array of cylinders
  - Collects direct, diffuse, and reflected light
     Reflected light gain based on roof material

  - Airflow between cylinders Reduced wind uplift
  - Cooler operating temperatures



- Project Background Information
- Precast Concrete Walls
- Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity

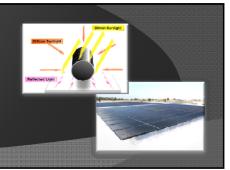
- Conclusions Questions and Answers

### **Electrical Breadth Study**

- How many Solyndra panels can be installed on the roof?
  - Orientation of building
  - Dimensions of panels vs. Dimensions of roof
- 3 sections of usable roof space on SW side
- 13 panels lengthwise along slope of roof
- 78 panels across the roof
  - 1014 panels total

| 1.1     | ΤΦ L           | 17    | 1       | _ / n        | na jen  | er.          |   |
|---------|----------------|-------|---------|--------------|---------|--------------|---|
|         |                |       |         | REAL ST      |         | ÷            |   |
| 12      | 1              |       |         | SPITE MARTIN |         | E-FE         | Ì |
| <b></b> | [ana -         |       | an fana | nuel actual  | THE YES |              |   |
|         | Harris         |       |         |              |         | Nex<br>There |   |
| 岸       | 1              | · · · |         | ,            | -       |              |   |
|         | 7 and<br>10885 |       |         |              | -       | 2267         | ž |

### **Presentation Outline**

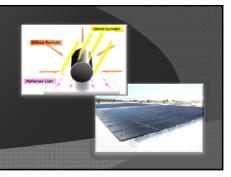

- Project Background Information
- Precast Concrete Walls
- Structural Breadth
- Hangar Slab Sequence Design/Build Productivity Conclusions

- Questions and Answers

# **Electrical Breadth Study**

- Energy Production Potential
  - Power Rating of Solyndra panel
  - Monthly insolation values for location
  - Max annual output: 274 kWh/panel
  - Reflectivity reduction: 88%
  - Potential annual output: 241 kWh/panel

241kWh/panel/year x 1014 panels = 244,374 kWh/year




- Project Background Information
- Precast Concrete Walls
- Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity

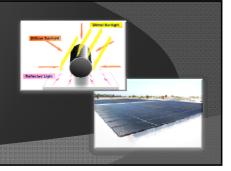
- Conclusions Questions and Answers

### **Electrical Breadth Study**

- Building Energy Usage
- Existing hangar energy usage
- Average office energy usage
- Total Expected Energy Usage = 213,773 kWh/year
- Cost of Installing Solyndra System
- \$7 per Watt per panel
  \$7/W/panel x 200W x 1014 panels
- \$1,419,600 to purchase and install



### **Presentation Outline**


- Project Background Information
- Precast Concrete Walls
- Structural Breadth Hangar Slab Sequence Design/Build Productivity Conclusions

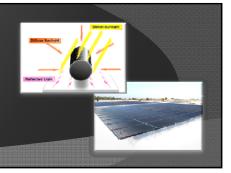
- Questions and Answers

# Electrical Breadth Study

- Payback Period of System
  - Cost of electricity: 6.64 cents per kWh in WV
  - Expected savings plus sale of electricity
     \$0.0664/kWh x 244,374 kWh/year = \$16, 226/year

\$1,419,600 / \$16,226/year = 87.5 years



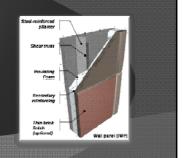

- Project Background Information

- Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity

- Conclusions Questions and Answers

#### Conclusion and Recommendation

- System produces more than building uses
- Payback period is extremely long Low cost of energy for project location
  - More feasible in higher cost region
- Recommendation: Do not install Solyndra system on this project.




### Presentation Outline

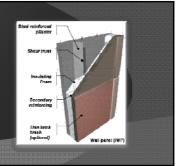
- Project Background Information Solar Energy Collection © Electrical Breadth
- Structural Breadth
- Hangar Slab Sequence Design/Build Productivity Conclusions
- Questions and Answers

## Precast Concrete Walls

- Goal of Analysis
  - Is precast concrete a better option than CMU for wall construction?
- Exterior façade
  - Interior load-bearing walls



- Project Background Information Solar Energy Collection © Electrical Breadth
- Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity


- Conclusions Questions and Answers

#### Precast Concrete Walls

#### Exterior Façade

- Currently split-face CMU to match existing buildings

- Carbon Cast panels
- Thin-brick technology to match aesthetics
- Produced in controlled conditions
- Higher quality product than masonry



### Presentation Outline

- Hangar Slab Sequence Design/Build Productivity Conclusions

- Questions and Answers

# Structural Breadth Study

- Load Determination
- Dead Load: 21.3 PSF
- Live Load: 20 PSF

#### Strength Design Method

- Load combination: 1.2D + 1.6L
- Total Axial Load = 3.22 kips

 $P_{D} = 1193 \text{ lbs}$  $P_{L} = 1120 \text{ lbs}$  $P_{U} = 1.2P_{D} + 1.6P_{L} = 3223 \text{ lbs} = 3.22 \text{ kips}$ 



- Hangar Slab Sequence Design/Build Productivity Conclusions

- Questions and Answers

# Structural Breadth Study

- Cost Comparison
  - Masonry package: \$230,011

  - Precast package: \$506,084
     \$38/SF estimate from High Concrete

#### Increased Floor Space

- Change from 12" masonry to 8" concrete walls
- 117 SF added at \$340/SF
- \$39,720 worth additional usable space

- Project Background Information Solar Energy Collection © Electrical Breadth
- Structural Breadth Hangar Slab Sequence Design/Build Productivity

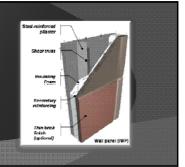
- Conclusions Questions and Answers

### Structural Breadth Study

- Schedule Comparison
- Masonry package: 25 days on-site
- Precast concrete package: 15 days on-site
  Not on critical path: does not change project schedule
- Productivity Impact
  - Fewer workers for precast
  - More moving equipment for precast



### Presentation Outline


- Project Background Information Solar Energy Collection © Electrical Breadth

- Hangar Slab Sequence Design/Build Productivity Conclusions

- Questions and Answers

# **Conclusion and Recommendation**

- Cost of change is more than double
- Overall schedule not reduced
- Increased floor space
- Higher quality facade
- Recommendation: Use the masonry system as designed instead of precast concrete option.



- Project Background Information Solar Energy Collection © Electrical Breadth Precast Concrete Walls © Structural Breadth Harmore Stab Scorepore

- Design/Build Productivity Conclusions Questions and Answers

# Hangar Slab Sequence

#### Goal of Analysis

- Determine most efficient sequence for concrete placement in hangar area

  - Duration Productivity

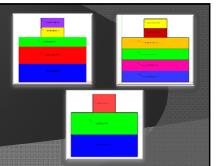

# **Presentation Outline**

- Project Background Information Solar Energy Collection © Electrical Breadth

- Precast Concrete Walls Structural Breadth
- Design/Build Productivity Conclusions
- Questions and Answers

# Hangar Slab Sequence

- Industry Survey
- Larger pour size = higher productivity
- 3 Sequences
- As-built
- More pours/smaller width • Less pours/greater width




- Project Background Information Solar Energy Collection © Electrical Breadth

- Precast Concrete Walls Structural Breadth
- Design/Build Productivity
- Conclusions
- Questions and Answers

# **Conclusion and Recommendation**

- Quality vs. Cost
- Hangar dimensions
- Recommendation: Employ the slab pour sequence that was chosen by project team. Slightly larger pours if dimensions allow



- Project Background Information Solar Energy Collection © Electrical Breadth Precast Concrete Walls

- Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity
- Conclusions Questions and Answers

# Design/Build Productivity

### Goal of Analysis

Does design/build construction increase productivity for the management and design team as well as in the field?



# Presentation Outline

- Project Background Information Solar Energy Collection © Electrical Breadth

- Precast Concrete Walls Structural Breadth
- Bangar Slab Sequence Design/Build Productivity

- Questions and Answers

# Design/Build Productivity

- Measurements
  - Preconstruction activity time
- Paperwork during construction
  Ability to work ahead



- Project Background Information Solar Energy Collection © Electrical Breadth Precast Concrete Walls

- Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity
- Conclusions
- Questions and Answers

# Design/Build Productivity

- Research Steps
  - Project Manager Survey
  - Owner PerspectiveCauses of Delays

  - Potential Benefits



### Presentation Outline

- Precast Concrete Walls Structural Breadth
- Hangar Slab Sequence
- Conclusions
- Questions and Answers

# Design/Build Productivity

- Findings of Research
  - Preconstruction time reduced

  - Design is better the first time
     Estimating is completed simultaneously
  - Subcontractors acquired earlier for design-assist
- Less paperwork during construction
- RFI's handled in open meetings Change Orders almost completely eliminated
- Submittal process much shorter: subcontractors know the specifications

- Project Background Information Project Background Informa Solar Energy Collection e Electrical Breadth Precast Concrete Walls e Structural Breadth Hangar Slab Sequence Design/Build Productivity

- Conclusions Questions and Answers

### **Design/Build Productivity**

- Findings of Research continued
  - Able to start activities sooner

  - Procurement of long-lead items
    Subcontractors determine means and methods of construction during design phase
    Subcontractors can schedule labor and equipment to reduce chance of delays

- Success of delivery method depends on the team · Good contractor with good design can make any method work
- D/B requires background knowledge of project
- Owner must know what they want

# Presentation Outline

- Project Background Information Solar Energy Collection © Electrical Breadth

- Precast Concrete Walls

  Structural Breadth
- Structurar brosser
   Hangar Slab Sequence
   <u>Puild Productivity</u>
- Conclusions
- Questions and Answers

# Conclusion

If the design/build team and owner coordinate well, there is potential for higher productivity



- Project Background Information Solar Energy Collection © Electrical Breadth Precast Concrete Walls

- Structural Breadth
   Hangar Slab Sequence
   Design/Build Productivity
- Questions and Answers

#### Conclusions

- Project Team made good decisions in selection of systems and design methods
- For other projects, proposed changes may be more beneficial
- Use of Design/Build delivery should continue to be implemented at greater levels



### Presentation Outline

- Project Background Information Solar Energy Collection © Electrical Breadth Precast Concrete Walls © Structural Breadth Hangar Slab Sequence Design/Build Productivity Conclusions Questions and Answers

**QUESTIONS?** 

